1. (a) resistors in series add to 20 Ω and current is 0.60 A accept potential divider stated or formula

B1

so p.d. across XY is $0.60 \times 12 (= 7.2 \text{ V})$ gives $(12/20) \times 12 \text{ V} (= 7.2 \text{)V}$

B1

(b) (i) the resistance of the LDR decreases

M1

(so total resistance in circuit decreases) and current increases

A1

(ii) resistance of <u>LDR and 12 Ω </u> (in parallel)/<u>across **XY**</u> decreases

B1

В1

so has smaller share of supply p.d. (and p.d. across XY falls) alternative I increases so p.d. across 8.0 Ω increases; so p.d. across XY falls

[6]

2. (a) (i) I = V/R = 8.0/200I = 0.040 (A)

C1 A1

(ii) V = 24 - 8 = 16 (V)

(iii) R = 16/0.04 giving $R = 400 (\Omega)$

B1

accept ratio of p.d.s to ratio of Rs ecf from (i) & (ii) ie (a)(ii)/(a)(i)

C1 A1

(iv) $P = VI = I^2R = V^2/R$ P = 0.640 (W)

ecf from (i) & (ii) accept 640 mW

C1

A1

(c)

(i)

 $Q = It = 2.5 \times 6 \times 60 \times 60$

the thermistor has heated up/its temperature has increased (b) (i) so its resistance has dropped so the ratio of the voltages across the potential divider changes/AW accept so the current increases accept so IR of fixed resistor increases **B1** M1 A1 (ii) voltages are equal so resistances are equal В1 (c) (i) straight line through origin labelled R passing through 0.06,12 allow correct lines with no labels **B1 B**1 (ii) upward curve below straight line through origin labelled T passing through 0.06,12 **B**1 **B**1 [15] 3. Any four from: $B1 \times 4$ 1. (As temperature increases) the resistance of the thermistor / T decreases 2. The total resistance decreases (Possible ecf) 3. The current increases (in the circuit) (Possible ecf) The (voltmeter) reading increases / voltage across **R** increases (Possible ecf) 4. 5. The voltage across the thermistor / T decreases (Possible ecf) Correct use of the potential divider equation / comment on the 'sharing' 6. of voltage / correct use of V = IR[4] 4. (a) E = I(R + r)**B**1 (b) (i) 1 0.80Ω **B**1 2 6.4 V **B1** (ii) (sum of) e.m.f.s = sum /total of p.d.s/sum of voltages (in a loop) **B1** (iii) 6.4 = 0.80II = 8.0 Acan be $2 \ ecf \ from \ (b)(i), \ eg \ 21.6/0.8$ = 27 A (1 ecf) or 21.8/0.68 = 31.8 A (2 ecf)**C1 A1**

5.

(a)

(b)

(c)

[12]

= 54000 (C)allow 1 mark if forgets one or two 60's giving 900 C or 15 C **C1 A1** (ii) energy = $QE = 54000 \times 14$ =756000 (J)allow (use of 12 V gives) 648000 J for 1 mark **C1 A1** energy loss = $I2Rt = VIt = 2 \times 2.5 \times 6.0 \times 60 \times 60 = 108000 J$ (iii) percentage = $(108000/756000) \times 100 = 14\%$ accept $Q\Delta V = 54000 \times 2.0 = 108000 J$ accept $Q\Delta V/QE = 2.0/14.0 = 14\%$ **not** 756000/54000 = 14%**C1 A1** resistance = p.d./current accept voltage instead of p.d.; ratio of voltage to current; voltage per (unit) current **not** R = V/I or p.d. = current x resistance or p.d. per amp or answer in units or voltage over current **B**1 (i) 6 V **B**1 R = V/I = 6/0.25(ii) $=24(\Omega)$ ecf(b)(i) 240 V gives 960 Ω award 0.024 \, \Omega \, 1 \, mark \, only \, (POT \, error) **C1 A1** (i) 6 V supply with potential divider 'input' across it and lamp across p.d. 'output' ammeter in series with lamp voltmeter across lamp *accept* 0 − 6 V variable supply with lamp across it not variable R in series with supply circuit with no battery present can only score voltmeter mark **B1 B1 B**1

6.

7.

	(ii)	non-zero intercept line indicating increasing value of R with current		
		curve must reach y-axis accept straight line or upward curve	B1 B1	
	(iii)	resistivity/resistance of filament wire increases with temperature the temperature of the lamp increases with current/voltage increase more frequent electron-ion/atom collisions/AW increased ion vibrations		
		accept any two of the four statements accept AW, e.g the lamp heats up because of the current		
		of the current	B1 B1	
(d)	(i)	lamps do not light		
		ignore reasons unless too contrary	B1	
		remaining lamps are lit with qualification qualification could be more dimly or sensible explanation	B 1	
	(ii)	using resistors in parallel formula to obtain a value of R per unit R per unit = 19.4 Ω or R total = 774 Ω I = 6/19.4 or 240/774 = 0.31 A	ы	
		eg takes R of bulb = 10Ω giving R per unit = 9.1Ω gains first mark only ecf $(b)(i)(ii)$ accept R of resistors = 4000Ω ; current in chain = $0.06 A$; total current = $0.06 + 0.25 = 0.31 A$ $0.3 A$ is SF error so gains 2 marks only		
		apply SF error only once in paper	C1 C1 A1	[16]
(Sum of) e.m.f.s = sum /total of p.d.s/sum of voltages (in a loop) energy is conserved			B1 B1	[2]
(a)	(Sem	niconductor) diode	B1	
(b)	The o	diode symbol circled (No ecf allowed)	B1	

(c)
$$R = \frac{V}{I}$$

At 0.20 V, R = infinite /
$$\underline{\text{very}}$$
 large

At 0.70 V,
$$R = (\frac{0.70}{0.020}) = (35(\Omega))$$
 (Allow answers in the range:

(d) p.d across diode = 0.75 (V)
$$/(R_t = \frac{4.5}{0.060} =) 75 (\Omega)$$
 C1

p.d across resistor =
$$4.5 - 0.75 = 3.75$$
 (V) $/ (R_d = \frac{0.75}{0.060} =)12.5(\Omega)$ C1

$$R = (\frac{3.75}{0.060} = 62.5 \approx)63(\Omega)$$
 / $R = (75 - 12.5 = 62.5 \approx) 63(\Omega)$ A1

(Use of 0.70 V across the diode gives $R = 63.3\Omega$ - This can score 2/3)

(e) Straight line through the <u>origin</u>
Line of correct gradient (with line passing through 0.63 V, 0.01 A)

[Possible ecf]

A1

[10]